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Abstract Serotonin 2A receptor (5-HT2AR) agonist “classic psychedelics” are
drawing increasing interest as potential mental health treatments. Recent work
suggests psychedelics can exert persisting anxiolytic and antidepressant effects
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lasting up to several months after a single administration. Data indicate acute
subjective drug effects as important psychological factors involved in observed
therapeutic benefits. Additionally, animal models have shown an important role
for 5-HT2AR agonists in modulating learning and memory function with relevance
for Alzheimer’s Disease (AD) and related dementias. A number of biological
mechanisms of action are under investigation to elucidate 5-HT2AR agonists’ ther-
apeutic potential, including enhanced neuroplasticity, anti-inflammatory effects, and
alterations in brain functional connectivity. These diverse lines of research are
reviewed here along with a discussion of AD pathophysiology and neuropsychiatric
symptoms to highlight classic psychedelics as potential novel pharmacotherapies for
patients with AD. Human clinical research suggests a possible role for high-dose
psychedelic administration in symptomatic treatment of depressed mood and anxiety
in early-stage AD. Preclinical data indicate a potential for low- or high-dose psy-
chedelic treatment regimens to slow or reverse brain atrophy, enhance cognitive
function, and slow progression of AD. In conclusion, rationale and potential
approaches for preliminary research with psychedelics in patients with AD are
presented, and ramifications of this line of investigation for development of novel
AD treatments are discussed.

Keywords Alzheimer’s disease · Dementia · Hallucinogen · Mild cognitive
impairment (MCI) · Psilocybin · Psychedelic

1 Introduction

Alzheimer’s Disease (AD) is a growing concern amid a rapidly increasing popula-
tion aged 65 and older worldwide, and projected rising global life expectancy
(He et al. 2016). Currently, more than five million adults in the USA and 36 million
worldwide are living with AD, and this number is expected to triple by 2050
(Alzheimer’s Association 2021). However, there has been little success in develop-
ment of strategies for AD pharmacotherapy. Symptomatic treatment of AD with
acetylcholinesterase inhibitors such as donepezil, rivastigmine, and galantamine has
been available since the 1990s with modest benefits for some patients (Tayeb et al.
2012). The N-Methyl-D-aspartate (NMDA) antagonist memantine was approved for
treating moderate to severe AD by the US Food and Drug Administration (FDA) in
2003, but to date no cure or well-established disease modifying treatment for AD is
available, despite extensive research and drug development efforts involving over
240 failed candidate drugs (Dubois et al. 2014; Wimo et al. 2014). Although recent
progress has been made toward developing novel antibody-based pharmacotherapies
such as aducanumab (Sevigny et al. 2016) and donanemab (Mintun et al. 2021),
controversy remains whether these will prove safe, accessible, and substantially
effective treatments for patients with AD (Ayton 2021; Doggrell 2021; Knopman
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et al. 2021). Given the enormous morbidity and mortality associated with AD, it is
clear that novel approaches to AD treatment are urgently needed.

The past two decades have seen a resurgence in research involving hallucinogenic
serotonin 2A receptor (5-HT2AR) agonists, known as “classic psychedelics,” as
potential treatments across a range of medical and mental health conditions. Prelim-
inary studies in animals and humans suggest that classic psychedelics such as
psilocybin, lysergic acid diethylamide (LSD), and the dimethyltryptamine (DMT)
containing decoction ayahuasca may have promising antidepressant, anxiolytic, and
antiaddictive properties (Garcia-Romeu et al. 2016). So much so, that the FDA has
granted psilocybin “breakthrough therapy” designation as a potential treatment for
major depressive disorder, with clinical trials of therapeutic safety and efficacy
currently underway (Nichols 2020). To date, psychedelics’ psychological mecha-
nisms of action appear related to acute subjective drug effects associated with
positive therapeutic outcomes (Bogenschutz et al. 2015; Garcia-Romeu et al.
2014; Griffiths et al. 2016; Roseman et al. 2018; Ross et al. 2016). Additionally,
preclinical and neuroimaging research indicate a number of compelling biological
mechanisms of psychedelics related to stimulation of 5-HT2AR and downstream
signaling pathways relevant to AD. These mechanisms include promotion of struc-
tural and functional neuroplasticity (Catlow et al. 2013; Lima da Cruz et al. 2018; Ly
et al. 2018), post-acute changes in key signaling pathways such as brain-derived
neurotrophic factor (BDNF) (Hutten et al. 2021; Ly et al. 2018), anti-inflammatory
effects (Flanagan and Nichols 2018), as well as acute and post-acute changes in brain
functional connectivity (Barrett et al. 2020a, b; Carhart-Harris et al. 2012; Carhart-
Harris et al. 2017; Preller et al., 2020). This review provides a detailed examination
of potential mechanisms of classic psychedelics as possible treatments for patients
with AD and describes the rationale for targeted investigation of psychedelics in
patients with early AD (e.g., ClinicalTrials.gov NCT04123314).

2 Pathophysiology and Etiology of Alzheimer’s Disease

Both normal aging and Alzheimer’s Disease (AD) have been associated with
decreased functional brain activity and connectivity (Dennis and Thompson 2014;
Tomasi and Volkow 2012). Network hypersynchrony and abnormalities such as
impaired default mode network (DMN) deactivation have been linked to cognitive
dysfunction and implicated as potential targets for therapeutic intervention in AD
(Palop and Mucke 2016). The neuropathological hallmarks that typically define AD
are amyloid-β (Aβ) plaques, neurofibrillary tangles, and neuronal and synaptic loss
(Serrano-Pozo et al. 2011a; Shoghi-Jadid et al. 2002). This neurodegeneration is
associated with cognitive and functional decline typically starting with loss of
episodic memory and progressing to include aphasia, apraxia, and agnosia (Butzlaff
and Ponimaskin 2016; Weintraub et al. 2012). While amyloid is thought to be the
“prime mover” in AD pathobiology, we are still ascertaining the mechanisms of
progressive neurodegeneration, which likely include tau deposition as the next
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phase, leading on to neuronal loss. Aβ accumulation has been suggested to facilitate
formation of pathological tau, and together these seem to trigger additive neurotoxic
effects functioning as a systemic feedback loop resulting in acute neuron death and
synaptic dysfunction (Bloom 2014).

AD is thought to begin up to 20 years prior to symptoms with a lengthy
preclinical, “prodromal” phase during which cleavage of Amyloid Precursor Protein
(APP) by Beta-secretase 1 (BACE-1) and Gamma-secretase results in the aggrega-
tion of Aβ protein and Aβ plaques (Sperling et al. 2011). This accrual results in
neurodegeneration in characteristic brain regions (including the hippocampus, pos-
terior cingulate cortex, and precuneus) and impaired synaptic function over time
(Bateman et al. 2012; Dubois et al. 2014). Post-mortem data suggest a temporal
pattern of neurofibrillary tangle formation from the transentorhinal layer in early
stages of AD proceeding to the entorhinal cortex before subsequent degeneration in
the isocortical association areas in later stages of disease progression (Braak and
Braak 1991). This focus has led to exploration in clinical trials of anti-Aβ therapies
for AD treatment, which have thus far garnered little success (Karran et al. 2011;
Karran and Hardy 2014). AD patients present with heterogeneous symptoms that
may be conceptualized as distinct clinical syndromes with relatively greater distur-
bances in language, visuospatial functions, apraxia, or behavioral manifestations
(Stopford et al. 2008). These variations have also been associated with particular
clinical biomarkers. For instance, visual perception problems and/or spatial difficul-
ties are often accompanied by posterior cortical atrophy including hypometabolism
in these areas as observed by magnetic resonance imaging (MRI) and positron
emission tomography (PET) (Graff-Radford et al. 2021; Jack Jr et al. 2019). Fur-
thermore, while genetic variants such as apolipoprotein E4 (ApoE4) have long been
known to play a role in development of AD, which is highly heritable (Tanzi 2012),
contemporary research is shedding new light on genetic and environmental factors
related to AD, such as amyloid precursor protein metabolism (Kunkle et al. 2019)
and pesticide exposure (Killin et al. 2016). Below, we review selected aspects of AD
biological mechanisms which are potentially relevant to psychedelics’ mechanisms
of action.

2.1 Decreased Serotonergic Neurotransmission in AD

Evidence indicates reduced serotonergic neurotransmission in ADmay be associated
with psychiatric symptoms (Butzlaff and Ponimaskin 2016). Animal models of AD
suggest selective neurodegeneration of serotonin pathways and reduced serotonergic
neurotransmission (Liu et al. 2008). Preclinical research has shown β-amyloid
accumulation leads to a decline in 5-HT2AR levels in the cortex of mice (Holm
et al. 2010). In prodromal AD, PET imaging reveals a reduced density of serotonin
transporter which is associated with early cognitive changes (Smith et al. 2017).
Several studies report decreased 5-HT2AR levels in widespread areas of the brain in
AD (Marner et al. 2012; Mecca 2019). These changes are associated with

A. Garcia-Romeu et al.



neuropsychiatric symptoms including agitation, depression, and psychosis in AD
(Chakraborty et al. 2019). Relevant to classic psychedelics, 5-HT2AR density
declines in healthy aging throughout the brain and specifically in the hippocampus,
and the degree of temporal lobe 5-HT2AR decrease is associated with cognitive
decline in AD (Marner et al. 2012; Versijpt et al. 2003). Some studies point to
possible genetic influences of the serotonin system in AD, such as the 5-HT2AR
T102C polymorphism, where the CC genotype has been associated with risk of
psychotic symptoms in AD (Tang et al. 2017). In human PET studies, neocortical
regions including the orbitofrontal cortex (OFC) showed reduced 5-HT2AR binding
in both Mild cognitive impairment (MCI) and AD patients (Hasselbalch et al. 2008;
Lai et al. 2005; Versijpt et al. 2003). In addition to serotonin, other neurotransmitter
systems such as norepinephrine (Theofilas et al. 2017) and acetylcholine (Grothe
et al. 2012) have been implicated in AD pathology and identified as targets for AD
pharmacotherapies (Marucci et al. 2021). However, the current review focuses
primarily on serotonergic neurotransmission due to its key role in psychedelics’
biological mechanisms (Nichols 2016),

2.2 Loss of Synaptic Function in AD

Data suggest the loss of synaptic function in AD prior to neuronal loss (Selkoe
2002). For example, synaptophysin (a characteristic marker of synaptic integrity) is
decreased in prodromal AD (Masliah et al. 2001; Sze et al. 1997; Yuki et al. 2014).
One well-validated marker of synaptic density is synaptic vesicle glycoprotein
2 (SV2) which is expressed in virtually all synapses and is located in synaptic
vesicles at presynaptic terminals (Mecca 2019). A PET tracer for imaging SV2
density in vivo is now available ([11C]UCB-J) and has demonstrated decreased
SV2 density in the hippocampus of patients with AD compared to cognitively
unimpaired older adults (Chen et al. 2018).

2.3 Key Signaling Pathways in AD

Brain-derived neurotrophic factor (BDNF), a protein critical to neuronal growth and
survival, is affected by the accumulation of Aβ protein in prodromal AD (Peng et al.
2005). This accumulation interferes with the conversion of proBDNF to BDNF such
that parietal cortex levels of both proBDNF and BDNF are reduced in prodromal AD
and MCI, correlating with cognitive decline (Peng et al. 2005; Tanila 2017). In
addition, decreased Tropomyosin receptor kinase B (TrkB) BDNF receptor expres-
sion and increased expression of TrkB.T1 (a primary inhibitor of TrkB) result in
further BDNF inhibition as well as the prevention of long-term potentiation (LTP)
and long-term depression (Eide et al. 1996; Michaelsen et al. 2010) – processes
essential to memory formation (Minichiello 2009). The steady decrease of BDNF
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and its action, which may occur as a direct result of Aβ deposition, could be a critical
link between the prodromal phase of AD and the beginning of neurodegeneration
and cognitive decline, eventually culminating in dementia (Arancibia et al. 2008;
Ciaramella et al. 2013).

The Mammalian Target of Rapamycin (mTOR) signaling pathway also has a role
in LTP and memory formation (Cammalleri et al. 2003; Hoeffer and Klann 2010).
Hyperactivation of mTOR complex I leads to downstream inhibition of cell
autophagy, which could result in further Aβ deposition and tau
hyperphosphorylation (Caccamo et al. 2013). Conversely, the activated mTOR
signaling pathway has also been shown to induce structural plasticity and
neuritogenesis by regulating the behavior of axonal growth cones, dendrite arbori-
zation, and dendritic spine morphology via control of local protein synthesis
(Jaworski and Sheng 2006). Targeting mTOR signaling in key cognitive brain
regions could help delay or even prevent cognitive decline during the
neurodegeneration phase of AD (Tramutola et al. 2017).

2.4 Inflammation in AD

Accumulating evidence has implicated neuroinflammation in the progression of AD
(Kinney et al. 2018; Zotova et al. 2010). In post-mortem studies, brain tissue of
patients with AD exhibits signs of persisting inflammatory activity, such as activated
microglia and astrocyte clusters (Serrano-Pozo et al. 2011b). These in turn release
proinflammatory cytokines and interleukins (e.g., interleukin [IL]-1β, IL-6, and
tumor necrosis factor-α [TNF-α]), which cause tissue damage with prolonged
exposure, and interact with accumulating Aβ and NFT to contribute to neuronal
loss (Garwood et al. 2011; Wang et al. 2015). Early patient data suggested use of
medications such as Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) may be
associated with reduced severity of AD symptoms (Rich et al. 1995) and reduced
risk of developing AD (Stewart et al. 1997). To date, clinical trials of NSAIDs as a
treatment for AD have not shown positive results (Miguel-Álvarez et al. 2015).
However, targeted strategies for modulating neuroinflammation remain a viable
pathway for developing novel AD therapeutics that continue to be explored
(Ozben and Ozben 2019).

2.5 Changes in Brain Metabolism and Functional
Connectivity in AD

In addition to cellular and molecular mechanisms, human neuroimaging and post-
mortem studies provide insight into the neurobiology of AD. PET is a critical tool for
understanding and diagnosing AD, allowing Aβ and tau deposition to be evaluated
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in vivo (Brier et al. 2016), and using ligands such as fluorodeoxyglucose (FDG) to
assess functional brain metabolism (Rice and Bisdas 2017). These methods have
demonstrated differential patterns of atrophy, hypometabolism, and Aβ and tau
aggregation across the course of disease progression, informing the neurodegener-
ative processes underlying AD (Joie et al. 2012; Ossenkoppele et al. 2016). Current
imaging data suggest early-stage AD is marked by Aβ deposition, atrophy, and
metabolic dysfunction in posterior cortical regions, which are active during memory
retrieval in healthy individuals (Buckner et al. 2005). As cognitive function declines,
concurrent increases in tau deposition are observed in the temporal lobe (Brier et al.
2016) and other key domain-specific regions (e.g., occipital cortex for individuals
with visual impairment) (Ossenkoppele et al. 2016).

Functional MRI data also show notable decrease in connectivity in normal aging
across several brain networks, while AD mainly shows alterations in the default
mode network (DMN), dorsal attention network (DAN), and the precuneus
(Hafkemeijer et al. 2012; Klaassens et al. 2017; Tomasi and Volkow 2012). The
DMN is primarily composed of the medial prefrontal cortex (mPFC), posterior
cingulate cortex (PCC), precuneus, and angular gyrus, which are involved in epi-
sodic memory retrieval (Sestieri et al. 2011), a function known to deteriorate in older
adults with AD (Mevel et al. 2011; Weintraub et al. 2012). In some cases of AD,
DMN desynchronization has been posited to contribute to cognitive decline, con-
sistent with evidence that differences in DMN activation in the precuneus and PCC
predicted lower Mini-Mental State Exam (MMSE) scores, typically indicative of
more severe dementia (Schwindt et al. 2013). Amyloid accumulation may also affect
DMN function, for instance leading to hypoconnectivity within the DMN in early
AD (Buckner et al. 2005; Palmqvist et al. 2017). The salience network (SN) has also
shown reduced gray matter volume and altered functional connectivity in AD that
were associated with neuropsychiatric symptoms (Balthazar et al. 2014), as well as
cognitive impairment (He et al. 2014). It has been hypothesized that increased SN
connectivity in AD is associated with greater “emotionality” which might contribute
to the expression of affective and other neuropsychiatric symptoms (Zhou and
Seeley 2014). Lasting alterations in brain network connectivity have been observed
after a single dose of psilocybin (Barrett et al. 2020a) and are correlated with
psilocybin’s antidepressant effects (Carhart-Harris et al. 2017), indicating a potential
biological mechanism by which psychedelics could affect AD progression and
related symptoms. Notably, the medial temporal lobes have been found to show
increases in activation during MCI and early-stage AD, which may be associated
with local tau formation and subsequent neurodegeneration and hypoactivation in
these regions that then spreads as AD progresses (Pasquini et al. 2019; Putcha et al.
2011).
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2.6 Neuropsychiatric Comorbidities in AD

Patients with AD have a high prevalence of comorbid neuropsychiatric symptoms,
with more than 40% exhibiting clinically significant symptoms of depression
(Lyketsos et al. 2002; Zhao et al. 2016). Beyond other challenges posed by AD,
depression adversely impacts both patient and caregiver quality of life (Karttunen
et al. 2011; Shin et al. 2005). Moreover, depression is known to mediate the
progression of AD, with more pronounced symptoms being associated with greater
risk of cognitive decline (Dotson et al. 2010; Herbert and Lucassen 2016;
Ruthirakuhan et al. 2019). Typical antidepressant medications have not shown
clear evidence of efficacy in patients with dementia, indicating a need for novel
treatments (Banerjee et al. 2013; Nelson and Devanand 2011; Rosenberg et al.
2010). Neuropsychiatric symptoms are frequently the first symptoms of prodromal
dementia (Leoutsakos et al. 2015) and associated with early manifestations of AD
biomarkers (Banning et al. 2021), which has led to the concept of Mild Behavioral
Impairment defining five domains of such symptoms which are predictive of inci-
dent MCI and dementia (Ismail et al. 2017).

The symptoms of AD also extend beyond cognitive complaints to include highly
prevalent, comorbid neuropsychiatric symptoms such as agitation, apathy, sleep
disturbances, and anxiety (Lyketsos et al. 2002; Steinberg et al. 2008). These
symptoms contribute to disability, worse life quality, impaired activities of daily
living, caregiver burden, institutionalization, and accelerated mortality (Lanctôt et al.
2017; Lyketsos et al. 2011; Peters et al. 2015; Soto et al. 2015). While practice
guidelines consistently refer to managing such symptoms as central to treating AD
(Lyketsos et al. 2006), there are no established effective treatments, highlighting this
as an important area for further research into novel therapies. In particular, depressed
mood, anxiety, apathy, and reduced quality of life represent compelling targets for
brief interventions involving moderate to high-dose psychedelic administration
based on existing clinical research described in more detail below. Conversely,
other neuropsychiatric symptoms related to AD such as delusions and hallucinations
are generally considered contraindications for high-dose psychedelic treatments
(Johnson et al. 2008), and it remains unclear how symptoms such as motor distur-
bances may be influenced by psychedelics.

3 Neurobiology of Psychedelics

A growing body of research supports the administration of 5-HT2AR agonist classic
psychedelics such as psilocybin and LSD as a potential treatment for various
conditions, including anxiety, mood, and substance use disorders (Garcia-Romeu
et al. 2016; Reiff et al. 2020). These compounds represent a novel frontier in the field
of psychiatry as possibly transdiagnostic pharmacotherapies with low toxicity and
addiction risk, and the potential for long-lasting benefits (Johnson et al. 2018). The
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underlying neurobiological mechanisms responsible for these effects are now being
explored in basic translational and clinical research, indicating additional potential
for these substances as possible novel treatment options for patients with AD.

3.1 Data on the Role of 5-HT2AR in Learning and Memory

Evidence indicates that serotonin has a key modulatory role in learning alongside
other neurotransmitters such as dopamine (Aznar and Hervig 2016; Frick et al. 2015;
Harvey et al. 2004). In particular, 5-HT2AR agonists like psilocybin have long been
studied as potential modulators of learning and memory with early experiments
identifying pretreatment with 25ug/kg LSD as a facilitator of reversal learning in rats
compared to placebo (King et al. 1972). More recently, administration of a selective
5-HT2AR antagonist was shown to dose-dependently impair spatial reversal learning
and increase perseverative errors in rats, further implicating 5-HT2AR signaling in
cognitive flexibility processes (Boulougouris et al. 2008). Similarly, reversal learn-
ing deficits in chronically stressed rats can be alleviated with chronic SSRI treatment,
and this improvement is blocked by injection of a 5-HT2AR antagonist (Furr et al.
2012).

Additionally, LSD injections in the hippocampus have been shown to accelerate
classical conditioning of the eyeblink response in rabbits, with chronic LSD injec-
tions desensitizing 5-HT2AR but not 5-HT2CR-mediated behavioral responses
(Romano et al. 2010). Related work found that chronic treatment of rabbits with
an inverse 5-HT2AR agonist increased 5-HT2AR density in the frontal cortex and
produced similar acceleration in classical conditioning (Harvey et al. 2004). The
extinction of fear memories in rats can be accelerated by administration of 5-HT2AR
agonist (4-Bromo-3,6-dimethoxybenzocyclobuten-1-yl)methylamine hydrobromide
(TCB-2) and delayed by administration of a 5-HT2AR antagonist (Zhang et al. 2013).
Low doses of psilocybin likewise facilitate the extinction of fear memories and may
increase hippocampal neurogenesis in rats (Catlow et al. 2013). Furthermore, the
spatial tuning of neurons in the prefrontal cortex of rhesus monkeys performing a
visual working memory task can be accentuated or attenuated by the delivery of a
5-HT2AR agonist or antagonist, respectively (Williams et al. 2002). The 5-HT2AR
agonist TCB-2 can also improve the working memory of rats with medial forebrain
bundle lesions intended to mimic the cognitive effects of Parkinson’s Disease
(Li et al. 2015). Hippocampal TCB-2 injection during memory consolidation
enhances the object memory of mice, and this effect is blocked by pretreatment
with a 5-HT2AR antagonist, further supporting a key role for 5-HT2AR in modulating
memory (Zhang et al. 2016).

In addition to animal studies, research in humans has suggested a role for
5-HT2AR in regulating mood and memory functions. Genetic research has found
that variations of 5-HT2AR can influence memory task performance in humans, with
carriers of the heterozygous 5-HT2A H452Y polymorphism making more errors
during memory tasks (de Quervain et al. 2003), and displaying less right anterior
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hippocampal activation in response to novel stimuli compared to their homozygous
counterparts (Schott et al. 2011). These data suggest a robust influence of 5-HT2AR
activation in diverse learning and memory processes that are relevant to AD (Zhang
and Stackman Jr 2015), raising the possibility that low- or high-dose psychedelic
administration may have cognition-enhancing effects in patients with
AD. Approaches testing low-dose psychedelics might use a chronic dosing regimen
every few days over the course of several weeks to assess pre- and post-treatment
performance on validated measures of episodic memory, working memory, visuo-
spatial processing, and executive function (e.g., Mini-Mental State Exam, Hopkins
Verbal Learning Test, Trail Making Test, Raven’s Progressive Matrices, Category
Fluency). A similar design could be employed to examine effects of one or more
high-dose psychedelic sessions with psychological support, preferably with patients
in earlier stages of AD, where there would be less ethical concerns about informed
consent regarding study procedures (Kim 2011). Should any signal of cognitive-
enhancing effects emerge in initial research, this would pave the way for further
study of biological mechanisms using neuroimaging and other biomarker
assessment.

3.2 Psychoplastogenic Effects of Psychedelics and Related
Signaling Pathways

Data from cellular and molecular models additionally suggest classic psychedelics
may have potential in treating early-stage AD. A recent study found classic psyche-
delics to selectively induce structural and functional neuroplasticity in vitro and
in vivo in the rat prefrontal cortex at an extent comparable to BDNF, with resulting
effects posited as “psychoplastogenic” (Ly et al. 2018). Psychoplastogenic com-
pounds are defined to produce a measurable change in neuroplasticity within
24–72 h of a single administration. Measurable changes in plasticity include changes
in neurite growth, dendritic branching, dendritic spine density, synapse number, and
intrinsic excitability, among others (Olson 2018). Recently published data consistent
with psychoplastogenic effects found a single dose of psilocybin led to significant,
rapid increases in the formation, size, and density of dendritic spines in mouse
medial frontal cortex occurring within 24 h of dosing, with structural changes
persisting up to a month later (Shao et al. 2021). Psilocybin was also found to
increase excitatory postsynaptic current frequency and to reduce behavioral signs of
learned helplessness in a prolonged stress paradigm in mice (Shao et al. 2021).
Psychedelics are thought to induce such psychoplastogenic effects via 5-HT2AR
receptor stimulation, which upregulates Ania gene expression and affects
glutamatergic function (Nichols and Sanders-Bush 2002). Specifically, this activity
amplifies α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) gluta-
mate receptor signaling, resulting in downstream activation of the mTOR pathway –
one of the proposed mechanisms for the neural plasticity – promoting effects of
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psychoplastogens (Cavalleri et al. 2018). Recent data indicate that 5-HT2AR stimu-
lation may impact BDNF (Hutten et al. 2021; Tsybko et al. 2020), and result in
upregulated activity-regulated cytoskeleton-associated (Arc) protein expression
thought to be involved in cytoskeletal rearrangements for synaptic plasticity
(Nichols et al. 2003; Nichols and Sanders-Bush 2002).

Additional preclinical research provides further evidence on relevant mechanisms
for classic psychedelics to positively impact biological pathways relevant to AD. In
rats, a single LSD administration has been shown to increase expression of imme-
diate early genes (IEGs) implicated in synaptic plasticity in various brain regions
including the PFC, midbrain, and hippocampus (Nichols et al. 2003; Nichols and
Sanders-Bush 2002). Similarly, psilocybin and other 5-HT2AR agonists can induce
IEG expression in the mouse cortex (González-Maeso et al. 2007). Psilocybin has
also shown dose-dependent and differential alterations in transcriptional regulation
in the PFC and hippocampus across multiple plasticity-related genes in rats (Jefsen
et al. 2021). Additionally, preliminary data indicate a single administration of the
psychedelic 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) can increase
dendritic structural density and plasticity in the PFC, enhance fear extinction, and
enhance LTP in mice (Revenga et al. 2021). These effects were mediated by
5-HT2AR as evidenced by lack of such effects in 5-HT2AR knockout mice. Further-
more, DOI induced lasting changes up to a week post-drug administration in frontal
cortex gene expression in mice further suggesting transcriptional and epigenetic
mechanisms may mediate lasting effects of serotonergic psychedelics (Revenga et al.
2021). Chronic administration of DOI and other 5-HT2AR agonists produced
increased proBDNF levels and downregulation of TrkB receptors in mice (Tsybko
et al. 2020). Furthermore, the psychedelic 5-MeO-DMT has also been shown to
induce neuroplastic changes after a single dose including increased cell growth and
maturation in the dentate gyrus of mice (Lima da Cruz et al. 2018).

Finally, a series of recent studies conducted in pigs have also shown lasting
changes in PFC gene expression up to a week after a single dose of psilocybin
(Donovan et al. 2021). Increased hippocampal synaptic vesicle protein 2A (SV2A)
density and decreased hippocampal and PFC 5-HT2AR density have been found 24 h
post-psilocybin administration, and significant, ongoing increases in SV2A density
have been detected at 1 week post-psilocybin administration (Raval et al. 2021).
SV2A protein levels are thought to reflect presynaptic density, suggesting psilocybin
may increase synaptogenesis up to a week after a single psilocybin exposure in pigs
(Raval et al. 2021). Furthermore, novel evidence suggests 5-HT2AR inverse agonist
administration quickly and significantly reduced brain Aβ levels and improved
cognitive function in a mouse model of AD, though this effect was not observed
in 5-HT2AR knockout mice (Yuede et al. 2021). Taken together, this preclinical
evidence suggests classic psychedelics may act via a host of 5-HT2AR mediated
biological mechanisms to promote rapid changes in genetic expression leading to
longer lasting functional and structural brain changes, which may in turn be associ-
ated with therapeutic effects observed in human trials (Fig. 1). Although it remains to
be seen whether the mechanisms described here lead to clinical improvement in
humans, preclinical data on 5-HT2AR agonist effects on learning and memory,
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combined with the observed neurological, antidepressant, and anxiolytic effects of
psychedelics discussed below, present a compelling rationale for targeted investiga-
tion of 5-HT2AR agonist effects in patients with AD. Psychoplastogenic effects
could present a potential mechanism to slow or reverse atrophy in key brain regions
affected by AD and could be studied after chronic low-dose or one or more
high-dose psychedelic administration sessions in AD patients using pre- and post-
neuroimaging and neuropsychological testing, parallel to research in healthy volun-
teers described in more detail below (Madsen et al. 2020). Similarly, preclinical
findings on 5-HT2AR mediated reductions in Aβ levels (Yuede et al. 2021) could be
studied in clinical trials administering classic psychedelics to early-stage AD patients
and assessing longitudinal impact on Aβ, cognitive function, and disease progres-
sion, providing another possible, complementary therapeutic mechanism for advanc-
ing AD treatment.

3.3 Psychedelics as Anti-inflammatory Agents

Preclinical studies have shown robust anti-inflammatory effects of classic psyche-
delics (Flanagan and Nichols 2018). The 5-HT2AR agonist psychedelics (R)-2,4-
dimethoxy-4-iodoamphetamine [(R)-DOI] and LSD (among others) have been
found to suppress TNF-α induced inflammation in rat aortic smooth muscle cells,
with (R)-DOI exhibiting substantial potency in this regard (Yu et al. 2008). These
effects were consistent in vivo in mice, showing anti-inflammatory effects of (R)-
DOI in aorta, small intestine, and blood at low-dose levels, which were blocked by
co-administration of a selective 5-HT2AR antagonist, indicating a central role for
5-HT2AR in anti-inflammatory effects (Nau Jr et al. 2013). In addition to 5-HT2AR
mediated anti-inflammatory effects, cellular models suggest some classic psyche-
delics such as DMT and 5-MeO-DMT may exert additional anti-inflammatory
effects via the Sigma-1 receptor, including inhibition of IL-1β, IL-6, and TNF-α
(Szabo et al. 2014), proinflammatory cytokines known to be involved in AD
pathology (Wang et al. 2015). Furthermore, a recent study demonstrated the DMT
containing admixture ayahuasca, but not placebo, significantly reduced levels of the
inflammatory biomarker C-reactive protein from pre- to 48 h-post administration,
and these reductions were correlated with mood improvements in patients with
treatment-resistant depression (Galvão-Coelho et al. 2020). Anti-inflammatory
effects of psychedelics have not yet been conclusively studied in human clinical
populations but may be observed after repeated low doses of psychedelics or single
high doses. Such effects could be studied in AD patients via prospective measure-
ment of cytokines and related inflammatory biomarkers that may also serve as a
therapeutic target for treatment during early-stage AD or possibly in later stages
using chronic low-dose regimens.
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3.4 Psychedelics’ Effects in Humans

Recent imaging data provide insight into the activity of the brain during and after
acute psychedelic effects. Resting state network connectivity during psilocybin peak
effects shows increased between-network functional connectivity and simultaneous
decreased within-network connectivity in the DMN, visual networks, and auditory
networks (Mason et al. 2020). This altered network connectivity may be due in part
to psilocybin’s ability to reduce overall activity in both sides of the claustrum, a key
structure in the executive control of behavior, while simultaneously modifying the
connectivity of the claustrum with different networks such as the frontoparietal task
network (Barrett et al. 2020b). These acute effects are time-dependent and may be
predicted by baseline global brain connectivity (Preller et al. 2020).

Psilocybin also may mediate glutamate concentration in areas like the hippocam-
pus and medial prefrontal cortex via 5-HT2AR, ultimately leading to the activation of
AMPA receptors and the increased expression of BDNF (Hutten et al. 2021; Mason
et al. 2020). During acute psilocybin effects, working memory may appear
unchanged or impaired, perhaps due to attentional deficits stemming from an
impaired ability to ignore irrelevant stimuli (Barrett et al. 2018; Carter et al. 2005).
However, although the acute subjective effects of psilocybin last a matter of hours,
fMRI research has found longer term effects in the brain such as decreased amygdala
response during affective processing tasks a week after administration and increased
global functional brain connectivity a full month after administration (Barrett et al.
2020a). Such long-term effects suggest that psilocybin may induce a period of
heightened neuroplasticity lasting weeks after initial psilocybin administration.

Volunteers with treatment-resistant depression were found to have decreased
amygdala cerebral blood flow and increased DMN integrity 1 day after psilocybin
administration, which has been proposed as a potential “reset” mechanism of
psychedelics in which networks like the DMN may experience “modular disinte-
gration” acutely and then “re-integration” afterwards associated with therapeutic
outcomes (Carhart-Harris et al. 2017). Post-acute changes in functional connectivity
have also been found in healthy volunteers 1 day after administration of the classic
psychedelic admixture ayahuasca, including increased connectivity within the
salience network, decreased connectivity within the DMN, and greater connectivity
between the salience network and DMN, with the latter showing association with
acute affective changes (Pasquini et al. 2020). Although these findings are not
completely consistent with prior post-acute functional connectivity data on psilocy-
bin in depressed patients (Carhart-Harris et al. 2017), they do represent a relevant
area for further study using psychedelics and functional neuroimaging in patients
with AD, who have shown differential patterns of connectivity alterations related to
neuropsychiatric symptoms (Balthazar et al. 2014).

Memory Effects Human studies of psychedelics’ effects on memory have largely
focused on performance during drug effects, with most finding acute, dose-
dependent impairment under the influence of moderate or high doses of psychedelics
such as psilocybin (Barrett et al. 2018), LSD (Jarvik et al. 1955; Pokorny et al.
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2020), and ayahuasca (Bouso et al. 2013) on various memory and cognitive tasks
(Healy 2021). These impairments have been demonstrated across a number of
domains such as working memory (Bouso et al. 2013; Wittmann et al. 2007) and
word recall (Barrett et al. 2018). However, acute changes in autobiographical
memory during psychedelic effects have also been reported, suggesting LSD
(Langs 1967) and psilocybin (Carhart-Harris et al. 2012) can facilitate recall and
vividness of salient life memories, a potentially relevant mechanism for treatment of
AD, which is known to entail episodic memory impairment (Tromp et al. 2015). If
psychedelic administration has any long-term effects on human memory, data on
persisting brain and mood effects (e.g., Barrett et al. 2020a) suggest that they may
not resemble acute effects. However, post-acute effects of psychedelics on cognition
and memory in clinical populations have yet to be rigorously studied.

Reducing Depression, Anxiety, and Existential Distress A major focus of recent
research has been examining classic psychedelics’ effects on mood and anxiety
symptoms. Revisiting promising work from the earlier era of research on psyche-
delics (Grof et al. 1973; Richards et al. 1977), recent double-blind, controlled studies
found a single moderate dose of the classic psychedelic psilocybin to produce
clinically significant antidepressant effects and reduced anxiety in patients with
life-threatening cancer diagnoses (Griffiths et al. 2016; Grob et al. 2011; Ross
et al. 2016). In the largest of these contemporary trials, 51 cancer patients were
administered a moderate to high dose of psilocybin under supportive conditions,
with a majority showing therapeutic reductions in depression and anxiety and
improved quality of life that persisted for 6 months (Griffiths et al. 2016). Additional
pilot studies have found persisting anxiolytic effects of high-dose LSD treatment in
patients with life-threatening illness (Gasser et al. 2014), as well as rapid, sustained
antidepressant effects of psilocybin in patients with treatment-resistant major depres-
sion lasting 3 months (Carhart-Harris et al. 2016), and rapid antidepressant effects of
ayahuasca lasting at least 7 days (Palhano-Fontes et al. 2019). Recent controlled
trials have provided further support for antidepressant effects of psilocybin (Carhart-
Harris et al. 2021; Davis et al. 2021).

One study of psilocybin in 27 individuals with major depression used a wait-list
controlled design, randomizing participants to either an immediate treatment condi-
tion in which they received a moderate (20 mg/70 kg) and high (30 mg/70 kg) dose
of psilocybin approximately 2 weeks apart with psychological support throughout,
or to a control condition in which participants began an identical treatment after an
8-week delay period during which their mood was monitored. Twenty-four individ-
uals completed the study, showing significantly greater decreases in GRID-Hamilton
Depression Rating Scale (GRID-HAMD) scores in the immediate treatment group at
1 and 4 weeks after the second psilocybin session compared to the wait-list control
group at corresponding timepoints (Davis et al. 2021). After receiving the psilocybin
intervention, the wait-list control group also showed statistically significant
decreases from baseline in GRID-HAMD and other depression and anxiety mea-
sures lasting 4 weeks after the second psilocybin session, with more than half the
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sample overall (54%) meeting criteria for remission of depression at 4 weeks post-
treatment.

Another study used a double-blind, randomized comparative efficacy design to
assess effects of two high doses (25 mg) of psilocybin approximately 3 weeks apart
compared with 6 weeks of daily oral escitalopram, an approved selective serotonin
reuptake inhibitor (SSRI) antidepressant medication in a sample of 59 participants
with moderate to severe major depression (Carhart-Harris et al. 2021). Results found
significant reductions in depressive symptoms in both groups, with participants who
received psilocybin showing greater improvements overall. Although these
improvements did not meet statistical significance for superiority of psilocybin in
the primary outcome (i.e., Quick Inventory of Depressive Symptomatology-Self-
Report), depression remission was found in 57% of participants in the psilocybin
condition at the 6 week timepoint compared with 28% in the escitalopram condition,
and secondary outcome measures also favored psilocybin, indicating two high doses
of psilocybin are at least as effective – if not more so – in treating depression than
6 weeks of daily escitalopram.

Increased Wellbeing and Life Satisfaction A growing body of work has shown
sustained well-being benefits after classic psychedelic administration across diverse
samples, from healthy volunteers (Griffiths et al. 2008, 2018) and older long-term
AIDS survivors (Anderson et al. 2020) to people with a range of health conditions
including cancer-related distress (Agin-Liebes et al. 2020; Swift et al. 2017), alcohol
dependence (Bogenschutz et al. 2018), nicotine dependence (Noorani et al. 2018),
and major depression (Watts et al. 2017). In many cases, such persisting effects are
correlated with enduring personality changes such as increased openness, as well as
increased life satisfaction and overall well-being (Erritzoe et al. 2018; Griffiths et al.
2008; MacLean et al. 2011; Madsen et al. 2020; Schmid and Liechti 2018;
Smigielski et al. 2019a). Although the mechanisms for post-acute alterations in
personality, behavior, and well-being are still under investigation, they have been
linked to acute psychoactive drug effects that include a sense of insight and meaning
(Erritzoe et al. 2018; Griffiths et al. 2008; Smigielski et al. 2019a), spiritual or
mystical-type effects characterized by a sense of oneness (Garcia-Romeu et al. 2014;
MacLean et al. 2011; Schmid and Liechti 2018), and changes in 5-HT2AR binding
(Madsen et al. 2020) and brain network functional connectivity (Barrett et al. 2020a;
Sampedro et al. 2017; Smigielski et al. 2019b). That classic psychedelics have
shown these persisting benefits across such a wide range of individuals provides
good impetus to study them in patients with AD who are known to suffer from
substantial decrements to quality of life overall (Karttunen et al. 2011; Shin et al.
2005).
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4 Rationale and Approaches for Researching Psychedelics
in Patients with AD

The data presented above provide good evidence that for some patients with AD,
classic psychedelics may provide potential therapeutic benefits worth exploring
further. To this end, we are currently conducting a pilot study to examine the
potential of psilocybin to treat neuropsychiatric symptoms (NPS) in patients with
early-stage AD and MCI. The trial is the first to our knowledge using moderate
(15 mg/70 kg) and high-dose (25 mg/70 kg) psilocybin in patients with early-stage
AD or MCI and depressed mood (ClinicalTrials.gov NCT04123314). Because of
potential risks in more advanced cases of AD which may include symptoms such as
delusions or hallucinations that could be exacerbated by high-dose psychedelic
administration (Scarmeas et al. 2005), this research is geared toward earlier phases
of the disease, consistent with recommendations that “the field should explore
whether the long prodromal phase of AD creates novel possibilities to maintain
cellular functionality and brain homeostasis to postpone the phase of irreparable
damage and decay” (Sala Frigerio and De Strooper 2016, p. 71).

Clinical research to date has found benefits related largely to higher dose admin-
istration of classic psychedelics (Anderson et al. 2020; Bogenschutz et al. 2015;
Carhart-Harris et al. 2021; Davis et al. 2021; Griffiths et al. 2016; Johnson et al.
2014). These data also suggest mood, quality of life, and general well-being
improvements associated with high-dose psychedelic administration as potential
therapeutic targets for patients with AD. Other approaches may consider use of
lower repeated dosing of classic psychedelics in this population (Family et al. 2020).
Currently available data on psychedelic microdosing (using chronic sub-perceptual
doses that are not profoundly psychoactive) have failed to demonstrate consistent
benefits in controlled trials (Bershad et al. 2019; Family et al. 2020; Hutten et al.
2020). However, this area remains open for further investigation to expand our
understanding of the possible benefits, risks, and mechanisms of psychedelic treat-
ments in AD. Additionally, the potential of classic psychedelics to treat other
neurodegenerative disorders represents another compelling direction for future
research.

5 Conclusion

Classic psychedelics with psychoplastogenic properties have the potential to be a
powerful tool in the treatment of early-stage AD or MCI. Their ability to encourage
neuronal growth similar to BDNF, a key protein that MCI patients produce at
reduced levels, could possibly slow or even reverse the effects of a disease charac-
terized by neurodegeneration. Agents that selectively induce neural plasticity in the
cerebral cortex via direct action on 5-HT2AR, which are highly expressed in layer
5 pyramidal neurons of the cortex, represent an as yet uninvestigated
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pharmacological class in patients with AD. In sum, three converging biological
pathways may be responsible for induced neural plasticity resulting in long-lasting
and profound effects following psychedelic administration: 5-HT2AR upregulation
of neocortical BDNF, amplification of AMPA receptor activity resulting in down-
stream activation of mTOR, and upregulated Arc protein expression (Fig. 1). These
plasticity-promoting pathways could represent a novel disease modifying treatment
approach to treat AD that selectively induces neural plasticity in key cognitive brain
regions like the prefrontal cortex, that as a result of the disease are deficient in
endogenous plasticity-promoting compounds like BDNF. In addition, classic psy-
chedelics’ antidepressant and anxiolytic effects could provide important inroads for
promoting psychological benefits in patients struggling with AD and neuropsychi-
atric comorbidities such as depression and apathy.

Questions remain as to the primary therapeutic mechanisms underlying
psychedelic-assisted treatments. Some propose that characteristic mystical-type or
ego-dissolving subjective effects of high-dose psychedelics are necessary for psy-
chological benefits, (Yaden and Griffiths 2021) and others posit purely biological
mechanisms as necessary and sufficient to achieve lasting positive effects (Olson
2021). It is our contention that there may be truth to both. Neuroplasticity inducing
and anti-inflammatory properties of classic psychedelics suggest the potential for
purely biological therapeutic activity across several mechanisms, even at doses that
would not produce strong psychoactive effects (Flanagan and Nichols 2018; Ly et al.
2018; Shao et al. 2021). Thus, low-dose psychedelic treatments could have specific
applications that may not necessitate subjective effects, such as reducing brain
atrophy in neurodegenerative conditions, or recent work showing persisting reduc-
tions in migraine after a single dose of psilocybin that were not associated with
psychoactive effects (Schindler et al. 2021). However, for particular conditions like
depression, anxiety, addictions, and existential distress, current evidence suggests
the subjective effects of classic psychedelics play a pivotal role, likely driven by their
ability to alter core cognitive, emotional, and self-referential processes that can
facilitate therapeutic insight, catharsis, and behavior change (Garcia-Romeu et al.
2014; Griffiths et al. 2016; MacLean et al. 2011; Roseman et al. 2018). As such, we
recommend continued research of both low- and high-dose psychedelic therapy
approaches and to tailor treatments according to clinical target and population.

The present discussion aims to inform the nascent field of clinical psychedelic
research in patients with AD (George and Hanson 2019; Vann Jones and O’Kelly
2020). The data presented here, along with ongoing pilot research, set the stage to
examine psychedelic treatments as potential avenues to affect disease progression
and to enhance well-being and quality of life for patients with AD. We believe this
work is both timely and promising, and represents a viable path forward for
development of novel therapeutics in AD.
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